ATTACHMENT J. DETERMINATION OF EROSION POTENTIAL

E_D is determined as follows- The total effective work done on the channel boundary is derived and used as a metric to predict the likelihood of channel adjustment given watershed and stream hydrologic and geomorphic variables. The index under urbanized conditions is compared to the index under preurban conditions expressed as a ratio (E_p) . The effective work index (W) is computed as the excess shear stress that exceeds a critical value for streambed mobility or bank material erosion integrated over time and represents the total work done on the channel boundary:

$$W = \sum_{i=1}^{n} (\tau_i - \tau_c)^{1.5} \cdot V \cdot \Delta t_i$$
 (1)

Where τ_c = critical shear stress that initiates bed mobility or erodes the weakest bank layer, τ_i = applied hydraulic shear stress, Δt = duration of flows (in hours), and n = length of flow record. The effective work index for presumed stable stream channels under pre-urban conditions is compared to stable and unstable channels under current urbanized conditions. The comparison, expressed as a ratio, is defined as the Erosion Potential (Ep)¹ (McRae 1992, 1996).

$$Ep = \frac{W_{post}}{W_{pre}} \tag{2}$$

where:

 W_{post} = work index estimated for the post-urban condition W_{pre} = work index estimated for the pre-urban condition

MacRae, C.R. 1992. The Role of Moderate Flow Events and Bank Structure in the Determination of Channel Response to Urbanization. Resolving conflicts and uncertainty in water management: Proceedings of the 45th Annual Conference of the Canadian Water Resources Association. Shrubsole, D, ed. 1992, pg. 12.1-12.21; MacRae, C.R. 1996. Experience from Morphological Research on Canadian Streams: Is Control of the Two-Year Frequency Runoff Event the Best Basis for Stream Channel Protection. Effects of Watershed Development and Management on Aquatic Ecosystems, ASCE Engineering Foundation Conference, Snowbird, Utah, pg. 144-162